Dans le monde, en 2018, le milliard et demi de véhicules circulant sur les routes grâce à la combustion d’hydrocarbures fossiles aura émis environ 6 milliards de tonnes de dioxyde de carbone, soit plus de 15% des près de 37 milliards de tonnes de CO 2 dispersées cette année-là dans l’atmosphère. La transition énergétique impose de substituer rapidement des motorisations totalement décarbonées aux moteurs à combustion interne (MCI) actuels. La voiture « standard » actuelle exige une énergie d’environ 15 kWh pour vaincre, sur 100 km, les résistances que l’air et le sol opposent à son avancement. Le moteur à combustion interne qui la motorise a un rendement, du carburant à la roue, limité à 25%. Il lui faut donc 6 litres pour parcourir 100 km, sachant que le litre d’essence contient environ 10 kWh d’énergie.

Avec un réservoir de 50 litres, pesant environ 50 kg à vide, l’automobile actuelle a une autonomie de 700 à 800 km. Mais la combustion de cette essence « fossile » produira au moins 100 g de CO 2 par km parcouru, soit 10 kg aux 100 km. Le moteur à combustion interne d’hydrocarbures fossiles menace donc directement le climat et doit disparaître dès que possible. Le moteur électrique, dans ses versions adaptées aux puissances importantes (˃ 10 kW) alimentées en courant alternatif, apparaît tout de suite comme la solution idéale pour se substituer au MCI. Son rendement est excellent (85% et même 90% en version synchrone, triphasée, à aimants permanents). 18 kWh lui suffisent pour motoriser une voiture standard sur 100 km. Pour une autonomie de 700 km, 130 kWh lui sont donc suffisants, soit l’équivalent de 13 l d’essence, au lieu d’environ 50 l pour un MCI performant (7 l/100 km). Par ailleurs, son poids et son encombrement sont […]